Kursbeschreibungen

Fahrzeugtechnik

7. und 5. Semester

Stand: 04.07.2017
<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>P/W/Z</th>
<th>Credits</th>
<th>Lehre (nur Zahl = SWS)</th>
<th>Regel-semester</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Service Products</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MatLab Application in Mechanical Design</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Project II</td>
<td>P</td>
<td>8</td>
<td>8</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Advanced Manufacturing Technology**</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Finite Element Method**</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Hydraulic Transmission**</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Control Design and Practice of Manufacturing System</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>E-Business</td>
<td>W</td>
<td>4</td>
<td>4</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Green Manufacturing</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Introductions to Robotics</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Automotive Service Management</td>
<td>Z</td>
<td>4</td>
<td>4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Sensors and Actuators</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

P: Pflichtfach, W: Wahlpflichtfach, Z: Zusatzfach
**: Wahlpflichtfach fuer die Studierende, die den Kurs an der Heimathochschule schon belegt haben.
| **CDHAW**
| Chinesisch-Deutsche Hochschule für Angewandte Wissenschaften
| **Fach** | **Automotive Service Products**
| **Kreditpunkte** | **Sprache** | **English** |

| **Kurzfassung** | This course is a specialized course for senior Chinese students and German students who study in Automotive Engineering & Service (AES). The purpose of this course is to let students master the related technologies and be acquainted with the procedure of product development by introducing the typical products and their key technologies in the field of automotive service. |

| **Lernziele** | Students are required to master the basic principles of typical service products and key technologies, gain abilities to operate typical service products, and get acquainted with the procedure of product development. |

| **Einordnung** | BA-Studienprogramm an der CDHAW
| Studiengänge: | FT
| Regelsemester: | 7 [Hauptstudium]
| Art: | Pflichtfach |

| **Voraussetzungen** | Automotive Electrics and Electronics, Actuators and Sensors |

| **Studieninhalt** | 1. **Introduction**
| | 1.1 Overview of ASP course
| | 1.2 Background and Objective
| | 1.3 Requirements and Evaluation
| 2. **Tire Pressure Monitoring System**
| | 2.1 Basic Principles
| | 2.2 Typical solutions of TPMS
| | 2.2 Applications and exercise
| 3. **Controller Area Network bus and CANoe simulation**
| | 3.1 CAN specification
| | 3.2 CANoe simulation and exercise |

| | 2. CAN Specification 2.0, Robert Bosch GmbH, 1991 |

| **Verantwortliche/r** | Dr. GUO Weian |
Kurzfassung
This course is an elective course for mechanical design or related major students. The purpose of this course is enable students to master the basic use of MATLAB, and to use professional toolbox skillfully, to build the foundation for the subsequent courses, project design and scientific research.

Lernziele
Students is required to master the MATLAB data type, matrix input and method of operation, the use of 2D, 3D graphics, methods of function design, and the design of graphical user interface. And students can apply MATLAB skillfully, to solve complex mathematical problems in mechanical design and other related fields.

Einordnung
- **BA-Studienprogramm an der CDHAW**
- **Studiengänge:** MT, FT
- **Regelsemester:** 7 [Hauptstudium]
- **Art:** Pflichtfach

Voraussetzungen
Higher Mathematics, Linear Algebra, Mathematical Statistics and Analysis.

Studieninhalt
- Introduction to MATLAB
- MATLAB Basics
- Top-down Program Design
- Relational and Logical Operators
- Branches and Loops
- Plots
- User-defined Function
- Sparse Arrays, Cell Arrays, and Structures
- Graphical User Interfaces

Literatur

Verantwortliche/r
Prof. CHEN Ming
CDHAW
Chinesisch-Deutsche Hochschule für Angewandte Wissenschaften

<table>
<thead>
<tr>
<th>Modul</th>
<th>Project II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreditpunkte</td>
<td>Sprache</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Kurzfassung
Integrative project for students to apply basic and special knowledge and finish team work.

Lernziele
Students can prepare and process a mechatronic development project in the field of automotive engineering by applying all knowledge they learned in former courses and experiments. They can especially apply the required engineering methods from analysis and design phase up to realization and test.

Einordnung
BA-Studienprogramm an der CDHAW
Studiengänge: FT
Regelsemester: 7 [Hauptstudium]
Art: Pflichtfach

Voraussetzungen
All courses for AES students

Studieninhalt
- Project Analysis
- Project design
- Project facilities build up and testing
- Project facilities running and data collecting
- Data analyzing
- Project summary
- Report preparing
- Final Presentation and competitive examination

Literatur

Verantwortliche/r
Prof. CHEN Ming, etc.
Kurzfassung

The course aims at applications of advanced manufacturing technologies, requirements of social development, based contents of advanced manufacturing technologies and potentials of national economic development. Through the course, we endeavor in improving students’ innovation ability and strengthening students’ competitive power.

Lernziele

Students will understand and master various new ideas, new methods and new technologies about manufacturing. Students will also understand the frontier in mechatronic major development, widen knowledge areas, fit to change ideas and manufacturing methods from traditional manufacturing to advanced manufacturing.

Einordnung

- **BA-Studienprogramm an der CDHAW**
- **Studiengänge:** MT, FT
- **Regelsemester:** 7 [Hauptstudium]
- **Art:** Pflichtfach/Wahlpflichtfach

Voraussetzungen

- Mechanical Design,
- Manufacturing Technology Fundamental,
- Information Technology

Studieninhalt

Includes three parts: CIMS and its individual technology; process, technology and equipment of advanced manufacturing; production mode and management of advanced manufacturing. Students will understand and master various new ideas, new methods and new technologies about manufacturing. Students will also understand the frontier in mechatronic major development, widen knowledge areas, fit to change ideas and manufacturing methods from traditional manufacturing to advanced manufacturing.

Literatur

Verantwortliche/r

Prof. XIE Chun
<table>
<thead>
<tr>
<th>CDHAW</th>
<th>Modul</th>
<th>Kreditpunkte</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinesisch-Deutsche Hochschule für Angewandte Wissenschaften</td>
<td>Finite Element Method</td>
<td>5</td>
<td>English</td>
</tr>
</tbody>
</table>

Kurzfassung
Basic theory of finite element method. Application of commercial software MSC.Nastran/Patran. The course is given in English.

Lernziele
The students understand the fundamentals of finite element method and are able to use the commercial software to solve simple engineering problems.

Einordnung
BA-Studienprogramm an der CDHAW
Studiengänge: MT, FT
Regelsemester: 7 [Hauptstudium]
Art: Pflichtfach/Wahlpflichtfach

Voraussetzungen

Studieninhalt
- Mathematical basis of Finite Element Method (FEM)
- FEM for plane stress/strain problems
- Construction of shape function, convergence criteria of FEM
- Characteristics of FEM solutions
- Isoparametric element
- Numerical integration
- 3-dimensional element
- Bar/Truss element
- Beam element
- Plate element
- Shell element
- Solution methods of large, symmetry and sparse linear equations
- Practical considerations for modelling FEM models
- MSC.Nastran/Patran learning

Literatur

Verantwortliche/r
Prof. WANG Yu
Hydraulic transmission is a basic course for mechatronic engineering major students. According this course, principles of hydraulic elements and basic circuit should be grasped to design a hydraulic system.

Students can design a hydraulic system and choose proper elements.

BA-Studienprogramm an der CDHAW
Studiengänge: MT, FT
Regelsemester: 7 [Hauptstudium]
Art: Pflichtfach/Wahlpflichtfach

Mathematics, Mechanical design, Actuator and sensor, Microprocessor, Control technology

(1) Introduction to hydraulic transmission
(2) Fundamental hydraulic fluid mechanics
(3) Hydraulic pump and motor
(4) Hydraulic cylinder
(5) Hydraulic control valve
(6) Basic hydraulic circuit
(7) Design of hydraulic transmission system

Prof. YU Ying
Kurzfassung

This lecture is one of the core lectures of Mechatronics. Many of the sequential event-driven systems founded today, may be modeled as discrete-event dynamic systems (DEDS). Manufacturing system is one of the typical DEDS. The several different types of manufacturing system would be introduced, such as flexible manufacturing system. Moreover, the control function of the manufacturing system is analyzed deeply. The different characteristics are discussed between the discrete-event dynamic systems and continuous systems. The two important modeling tools would be introduced, which include the Matrix and Petri Nets. Then, we will concern how to establish the model of the DEDS based on the Matrix and Petri Nets and how to analyze the structure and performance of the modeling.

Lernziele

Einordnung

BA-Studienprogramm an der CDHAW
Regelsemester: 7 [Hauptstudium]
Art: Wahlpflichtfach

Voraussetzungen

1. The concept of DEDS, FMS and their characteristics.
2. The modeling methods of Matrix and Petri Nets.
4. Design and program of the controller based on the mentioned modeling methods.
5. Other modeling methods

Studieninhalt

1. The concept of DEDS, FMS and their characteristics.
2. The modeling methods of Matrix and Petri Nets.
4. Design and program of the controller based on the mentioned modeling methods.
5. Other modeling methods

Literatur

Verantwortliche/r

Prof. XIE Nan
| **CDHAW**
Chinesisch-Deutsche Hochschule für Angewandte Wissenschaften | **Modul** | **E-Business** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreditpunkte</td>
<td>4</td>
<td>Sprache</td>
</tr>
</tbody>
</table>

Kurzfassung
This is a fundamental course of e-business, with the emphasis on its concepts and applications of electronic business and electronic commerce from a managerial perspective.

Lernziele
The students should have, after having learnt the course, the basic knowledge of e-business and e-commerce, including, not limited to, their concepts from many perspectives, related technologies mainly concerning modern information technologies, their applications including enterprise e-business systems, their strategies and development methodologies, and management challenges or impact faced by enterprises.

Einordnung
BA-Studienprogramm an der CDHAW
Studiengänge: MT, FT, GT, WI
Regelsemester: 7 [Hauptstudium]
Art: Wahlpflichtfach

Voraussetzungen
Abschluss "Basics of Computer Hardware and Software", "Marketing", "Enterprise Business and Management"

Studieninhalt
- Fundamentals of e-business and e-commerce
- Information technologies
- Business applications of e-business and e-commerce, the enterprise e-business systems
- Business and IT strategies and information systems development
- Management challenges, ethical and security issues of information systems
1 SWS Labor

Literatur

Verantwortliche/r
Dr. LIU Yili
The course explores the recent developments in green manufacturing. It introduces the definition and the importance of green manufacturing, addresses the strategy of analyzing and practicing green manufacturing and examples of applications from the level of the manufacturing process, machine, systems, as well as the supply chain and packaging.

Students are required to:
- understand the importance of green manufacturing
- get an overview of the strategy of analyzing and practicing green manufacturing
- explore the recent developments and applications in green manufacturing

 BA-Studienprogramm an der CDHAW
Studiengänge: MT, FT, WI
Regelsemester: 7 [Hauptstudium]
Art: Wahlpflichtfach

- Introduction to Green Manufacturing
- Principles of Green Manufacturing
- Closed-Loop Production Systems
- Environmentally Friendly Machining
- Green Manufacturing Through Clean Energy Supply
- Packaging and the Supply Chain
- Green Manufacturing With Focus On the Automobile

Dr. WANG Lujiong
Introductions to Robotics

| Kursfassung | This lecture presents an overview of robotics, which includes kinematics, dynamics, control theory, sensor technologies, and programming languages for robots. The purpose is to help students be familiar with the basic knowledge of robots. It is designed for all Chinese students and foreigner exchange students, and given totally in English. |
| Lernziele | The objectives of this course are to help students understand the basic principles of robotics, acquire basic knowledge of kinetics and dynamics in robotics, and know the programming language for robots. Students will know the development of robots in the state of the art. Several demos are to help student cultivate their interests in robotics. |
| Einordnung | BA-Studienprogramm an der CDHAW
Studiengänge: FT
Regelsemester: 7 [Hauptstudium]
Art: Wahlpflichtfach |
<p>| Voraussetzungen | This lecture is open to all students who meet prerequisites involving electronics, mechanics, control theory, and necessary basic mathematical knowledge. |
| Studieninhalt | The lecture focuses on the basic knowledge of robotics including kinematics, modelling, dynamics, mechanics, linear and nonlinear control theory for robots, sensor technologies, programming languages in robotics. |
| Verantwortliche/r | Associate Prof. GUO Weian |</p>
<table>
<thead>
<tr>
<th>CDHAW Chinesisch-Deutsche Hochschule für Angewandte Wissenschaften</th>
<th>Modul</th>
<th>Automotive Service Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kursbeschreibungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modul</td>
<td></td>
<td>Automotive Service Management</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>4</td>
<td>Sprache</td>
</tr>
<tr>
<td>Sprache</td>
<td></td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Kurzfassung
Aufbau und Betrieb einer Serviceorganisation im Kfz-Bereich

Lehrziele
Erlangen von Verständnis für Aufbau und Betrieb einer Serviceorganisation im Kfz-Bereich, Kennenlernen der Steuerungsinstrumente.

Einordnung
BA-Studienprogramm an der CDHAW
Studiengänge: FT
Regelsemester: 5 [Hauptstudium]
Art: Zusatzfach

Voraussetzungen

Studieninhalt
- Funktion des Marktes
- Organisationen
- Relationen Service/Verkauf
- Betriebs- und Gebietsanalysen
- Imageanalyse von Betrieben und Marken
- Arbeitsqualität/Qualitätsmanagement
- Kundenbetreuung/Betreuungskompetenz
- Marktbearbeitung vom Auftrag bis zur Kundenzufriedenheit

Literatur
- Handbuch Service-Organisation (z.B. VW)

Verantwortliche/r
<table>
<thead>
<tr>
<th>CDHAW</th>
<th>Modul</th>
<th>Sensors and Actuators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kreditpunkte</td>
<td>Sprache</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Kurzfassung

Lehrziele
Erlernen des Aufbaus industrieller Meßsysteme und des Zusammenwirkens der Komponenten.

Einordnung
BA-Studienprogramm an der CDHAW
Studiengänge: FT
Regelsemester: 5 [Hauptstudium]
Art: Zusatzfach

Voraussetzungen
Abschluss "Elektronik 1"

Studieninhalt
1. Grundbegriffe der Messtechnik
2. Sensoren zur elektrischen Erfassung physikalischer Größen
3. Analogie Messtechnik
 · Messsignalauftereitung
 · analoge Filtertechnik
4. Digitale Messtechnik
 · Abtastung und Quantisierung
 · AD-Umsetzungsverfahren
 · Messdatenerfassungssysteme
 · digitale Signalverarbeitung
 · Bussysteme
5. Aufbau elektrischer, pneumatischer und hydraulischer Aktoren
6. Speicherprogrammierbare Steuerungen (SPS)
7. Vernetzung Sensorik/Aktorik/Steuergeräte zu Systemen
8. Übungen mit Laborbetrieb

1 SWS Labor

Literatur
- Hesse, Schnell: Sensoren für die Prozess- und Fabrikautomation. 3. Aufl. Vieweg.
- Merz: Elektrische Maschinen und Antriebe. VDE Verlag.

Verantwortliche/r